nfdump/bin/sflow.c
2015-12-23 12:31:59 +01:00

2751 lines
89 KiB
C

/*
* Copyright (c) 2014, Peter Haag
* Copyright (c) 2009, Peter Haag
* Copyright (c) 2004-2008, SWITCH - Teleinformatikdienste fuer Lehre und Forschung
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* * Neither the name of the author nor the names of its contributors may be
* used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Author: haag $
*
* $Id: sflow.c 69 2010-09-09 07:17:43Z haag $
*
* $LastChangedRevision: 69 $
*
*
*/
/*
* sfcapd makes use of code originated from sflowtool by InMon Corp.
* Those parts of the code are distributed under the InMon Public License below.
* All other/additional code is pubblished under BSD license.
*/
/*
* -----------------------------------------------------------------------
* Copyright (c) 2001-2002 InMon Corp. All rights reserved.
* -----------------------------------------------------------------------
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* 3. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes sFlow(TM), freely available from
* http://www.inmon.com/".
*
* 4. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes sFlow(TM), freely available from
* http://www.inmon.com/".
*
* 5. InMon Corp. may publish revised and/or new versions
* of the license from time to time. Each version will be given a
* distinguishing version number. Once covered code has been
* published under a particular version of the license, you may
* always continue to use it under the terms of that version. You
* may also choose to use such covered code under the terms of any
* subsequent version of the license published by InMon Corp.
* No one other than the InMon Corp. has the right to modify the terms
* applicable to covered code created under this License.
*
* 6. The name "sFlow" must not be used to endorse or promote products
* derived from this software without prior written permission
* from InMon Corp. This does not apply to add-on libraries or tools
* that work in conjunction with sFlow. In such a case the sFlow name
* may be used to indicate that the product supports sFlow.
*
* 7. Products derived from this software may not be called "sFlow",
* nor may "sFlow" appear in their name, without prior written
* permission of InMon Corp.
*
*
* THIS SOFTWARE IS PROVIDED BY INMON CORP. ``AS IS'' AND
* ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* INMON CORP. OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*
* --------------------------------------------------------------------
*
* This software consists of voluntary contributions made by many
* individuals on behalf of InMon Corp.
*
* InMon Corp. can be contacted via Email at info@inmon.com.
*
* For more information on InMon Corp. and sFlow,
* please see http://www.inmon.com/.
*
* InMon Public License Version 1.0 written May 31, 2001
*
*/
#include "config.h"
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <sys/types.h>
#include <time.h>
#include <setjmp.h>
#include <unistd.h>
#include <netdb.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/time.h>
#ifdef HAVE_STDINT_H
#include <stdint.h>
#endif
#include "nffile.h"
#include "nfx.h"
#include "nf_common.h"
#include "util.h"
#include "bookkeeper.h"
#include "nfxstat.h"
#include "collector.h"
#include "sflow.h"
#include "sflow_proto.h" // sFlow v5
/*
#ifdef DARWIN
#include <architecture/byte_order.h>
#define bswap_16(x) NXSwapShort(x)
#define bswap_32(x) NXSwapInt(x)
#else
#include <byteswap.h>
#endif
*/
#ifndef DEVEL
# define dbg_printf(...) /* printf(__VA_ARGS__) */
#else
# define dbg_printf(...) printf(__VA_ARGS__)
#endif
#define MAX_SFLOW_EXTENSIONS 8
typedef struct exporter_sflow_s {
// link chain
struct exporter_sflow_s *next;
// generic exporter information
exporter_info_record_t info;
uint64_t packets; // number of packets sent by this exporter
uint64_t flows; // number of flow records sent by this exporter
uint32_t sequence_failure; // number of sequence failues
generic_sampler_t *sampler;
// extension map
// extension maps are common for all exporters
extension_info_t sflow_extension_info[MAX_SFLOW_EXTENSIONS];
} exporter_sflow_t;
extern extension_descriptor_t extension_descriptor[];
extern FlowSource_t *FlowSource;
/* module limited globals */
/*
* As sflow has no templates, we need to have an extension map for each possible
* combination of IPv4/IPv6 addresses in all ip fields
*
* index id:
* 0 : EX_NEXT_HOP_v4, EX_NEXT_HOP_BGP_v4, EX_ROUTER_IP_v4
* 1 : EX_NEXT_HOP_v6, EX_NEXT_HOP_BGP_v4, EX_ROUTER_IP_v4
* 2 : EX_NEXT_HOP_v4, EX_NEXT_HOP_BGP_v6, EX_ROUTER_IP_v4
* 3 : EX_NEXT_HOP_v6, EX_NEXT_HOP_BGP_v6, EX_ROUTER_IP_v4
* 4 : EX_NEXT_HOP_v4, EX_NEXT_HOP_BGP_v4, EX_ROUTER_IP_v6
* 5 : EX_NEXT_HOP_v6, EX_NEXT_HOP_BGP_v4, EX_ROUTER_IP_v6
* 6 : EX_NEXT_HOP_v4, EX_NEXT_HOP_BGP_v6, EX_ROUTER_IP_v6
* 7 : EX_NEXT_HOP_v6, EX_NEXT_HOP_BGP_v6, EX_ROUTER_IP_v6
*/
static uint16_t sflow_output_record_size[MAX_SFLOW_EXTENSIONS];
// All available extensions for sflow
static uint16_t sflow_extensions[] = {
EX_IO_SNMP_4,
EX_AS_4,
EX_MULIPLE,
EX_VLAN,
EX_MAC_1,
EX_RECEIVED,
0 // final token
};
static int Num_enabled_extensions;
static struct sflow_ip_extensions_s {
int next_hop;
int next_hop_bgp;
int router_ip;
} sflow_ip_extensions[] = {
{ EX_NEXT_HOP_v4, EX_NEXT_HOP_BGP_v4, EX_ROUTER_IP_v4 },
{ EX_NEXT_HOP_v6, EX_NEXT_HOP_BGP_v4, EX_ROUTER_IP_v4 },
{ EX_NEXT_HOP_v4, EX_NEXT_HOP_BGP_v6, EX_ROUTER_IP_v4 },
{ EX_NEXT_HOP_v6, EX_NEXT_HOP_BGP_v6, EX_ROUTER_IP_v4 },
{ EX_NEXT_HOP_v4, EX_NEXT_HOP_BGP_v4, EX_ROUTER_IP_v6 },
{ EX_NEXT_HOP_v6, EX_NEXT_HOP_BGP_v4, EX_ROUTER_IP_v6 },
{ EX_NEXT_HOP_v4, EX_NEXT_HOP_BGP_v6, EX_ROUTER_IP_v6 },
{ EX_NEXT_HOP_v6, EX_NEXT_HOP_BGP_v6, EX_ROUTER_IP_v6 },
};
#define SFLOW_NEXT_HOP 1
#define SFLOW_NEXT_HOP_BGP 2
#define SFLOW_ROUTER_IP 4
static int IP_extension_mask = 0;
static inline exporter_sflow_t *GetExporter(FlowSource_t *fs, uint32_t agentSubId, uint32_t meanSkipCount);
/*
* unused
//
static uint32_t MyByteSwap32(uint32_t n) {
return (((n & 0x000000FF)<<24) +
((n & 0x0000FF00)<<8) +
((n & 0x00FF0000)>>8) +
((n & 0xFF000000)>>24));
}
static uint16_t MyByteSwap16(uint16_t n) {
return ((n >> 8) | (n << 8));
}
*/
#define YES 1
#define NO 0
/* define my own IP header struct - to ease portability */
struct myiphdr {
uint8_t version_and_headerLen;
uint8_t tos;
uint16_t tot_len;
uint16_t id;
uint16_t frag_off;
uint8_t ttl;
uint8_t protocol;
uint16_t check;
uint32_t saddr;
uint32_t daddr;
};
/* same for tcp */
struct mytcphdr {
uint16_t th_sport; /* source port */
uint16_t th_dport; /* destination port */
uint32_t th_seq; /* sequence number */
uint32_t th_ack; /* acknowledgement number */
uint8_t th_off_and_unused;
uint8_t th_flags;
uint16_t th_win; /* window */
uint16_t th_sum; /* checksum */
uint16_t th_urp; /* urgent pointer */
};
/* and UDP */
struct myudphdr {
uint16_t uh_sport; /* source port */
uint16_t uh_dport; /* destination port */
uint16_t uh_ulen; /* udp length */
uint16_t uh_sum; /* udp checksum */
};
/* and ICMP */
struct myicmphdr {
uint8_t type; /* message type */
uint8_t code; /* type sub-code */
/* ignore the rest */
};
typedef struct _SFForwardingTarget {
struct _SFForwardingTarget *nxt;
struct in_addr host;
uint32_t port;
struct sockaddr_in addr;
int sock;
} SFForwardingTarget;
typedef enum { SFLFMT_FULL=0, SFLFMT_PCAP, SFLFMT_LINE } EnumSFLFormat;
typedef struct _SFConfig {
uint16_t netFlowPeerAS;
int disableNetFlowScale;
} SFConfig;
/* make the options structure global to the program */
static SFConfig sfConfig;
typedef struct _SFSample {
struct in_addr sourceIP; // EX_ROUTER_IP_v4
SFLAddress agent_addr;
uint32_t agentSubId;
/* the raw pdu */
u_char *rawSample;
uint32_t rawSampleLen;
u_char *endp;
/* decode cursor */
uint32_t *datap;
uint32_t datagramVersion;
uint32_t sampleType;
uint32_t ds_class;
uint32_t ds_index;
/* generic interface counter sample */
SFLIf_counters ifCounters;
/* sample stream info */
uint32_t sysUpTime;
uint32_t sequenceNo;
uint32_t sampledPacketSize;
uint32_t samplesGenerated;
uint32_t meanSkipCount;
uint32_t samplePool;
uint32_t dropEvents;
/* exception handler context */
jmp_buf env;
/* the sampled header */
uint32_t packet_data_tag;
uint32_t headerProtocol;
u_char *header;
int headerLen;
uint32_t stripped;
/* header decode */
int gotIPV4;
int offsetToIPV4;
int gotIPV6; // v6 flag
int offsetToIPV6;
struct in_addr dcd_srcIP; // Common (v4)
struct in_addr dcd_dstIP; // Common (v4)
uint32_t dcd_ipProtocol; // Common
uint32_t dcd_ipTos; // EX_MULIPLE
uint32_t dcd_ipTTL;
uint32_t dcd_sport; // Common
uint32_t dcd_dport; // Common
uint32_t dcd_tcpFlags; // Common
uint32_t ip_fragmentOffset;
uint32_t udp_pduLen;
/* ports */
uint32_t inputPortFormat;
uint32_t outputPortFormat;
uint32_t inputPort; // EX_IO_SNMP_4
uint32_t outputPort; // EX_IO_SNMP_4
/* ethernet */
uint32_t eth_type;
uint32_t eth_len;
u_char eth_src[8]; // EX_MAC_1
u_char eth_dst[8]; // EX_MAC_1
/* vlan */
uint32_t in_vlan; // EX_VLAN
uint32_t in_priority;
uint32_t internalPriority;
uint32_t out_vlan; // EX_VLAN
uint32_t out_priority;
/* extended data fields */
uint32_t num_extended;
uint32_t extended_data_tag;
#define SASAMPLE_EXTENDED_DATA_SWITCH 1
#define SASAMPLE_EXTENDED_DATA_ROUTER 4
#define SASAMPLE_EXTENDED_DATA_GATEWAY 8
#define SASAMPLE_EXTENDED_DATA_USER 16
#define SASAMPLE_EXTENDED_DATA_URL 32
#define SASAMPLE_EXTENDED_DATA_MPLS 64
#define SASAMPLE_EXTENDED_DATA_NAT 128
#define SASAMPLE_EXTENDED_DATA_MPLS_TUNNEL 256
#define SASAMPLE_EXTENDED_DATA_MPLS_VC 512
#define SASAMPLE_EXTENDED_DATA_MPLS_FTN 1024
#define SASAMPLE_EXTENDED_DATA_MPLS_LDP_FEC 2048
#define SASAMPLE_EXTENDED_DATA_VLAN_TUNNEL 4096
/* IP forwarding info */
SFLAddress nextHop; // EX_NEXT_HOP_v4, EX_NEXT_HOP_v6
uint32_t srcMask; // EX_MULIPLE
uint32_t dstMask; // EX_MULIPLE
/* BGP info */
SFLAddress bgp_nextHop; // EX_NEXT_HOP_BGP_v4, EX_NEXT_HOP_BGP_v6
uint32_t my_as;
uint32_t src_as; // EX_AS_4
uint32_t src_peer_as;
uint32_t dst_as_path_len;
uint32_t *dst_as_path;
/* note: version 4 dst as path segments just get printed, not stored here, however
* the dst_peer and dst_as are filled in, since those are used for netflow encoding
*/
uint32_t dst_peer_as;
uint32_t dst_as; // EX_AS_4
uint32_t communities_len;
uint32_t *communities;
uint32_t localpref;
/* user id */
#define SA_MAX_EXTENDED_USER_LEN 200
uint32_t src_user_charset;
uint32_t src_user_len;
char src_user[SA_MAX_EXTENDED_USER_LEN+1];
uint32_t dst_user_charset;
uint32_t dst_user_len;
char dst_user[SA_MAX_EXTENDED_USER_LEN+1];
/* url */
#define SA_MAX_EXTENDED_URL_LEN 200
#define SA_MAX_EXTENDED_HOST_LEN 200
uint32_t url_direction;
uint32_t url_len;
char url[SA_MAX_EXTENDED_URL_LEN+1];
uint32_t host_len;
char host[SA_MAX_EXTENDED_HOST_LEN+1];
/* mpls */
SFLAddress mpls_nextHop;
/* nat */
SFLAddress nat_src;
SFLAddress nat_dst;
/* counter blocks */
uint32_t statsSamplingInterval;
uint32_t counterBlockVersion;
#define SFABORT(s, r) longjmp((s)->env, (r))
#define SF_ABORT_EOS 1
#define SF_ABORT_DECODE_ERROR 2
#define SF_ABORT_LENGTH_ERROR 3
SFLAddress ipsrc; // Common (v6)
SFLAddress ipdst; // Common (v6)
} SFSample;
int Setup_Extension_Info(FlowSource_t *fs, exporter_sflow_t *exporter, int num);
static int printHex(const u_char *a, int len, char *buf, int bufLen, int marker, int bytesPerOutputLine);
static char *IP_to_a(uint32_t ipaddr, char *buf, int buflen);
static inline uint32_t getData32(SFSample *sample);
static inline uint32_t getData32_nobswap(SFSample *sample);
static inline uint64_t getData64(SFSample *sample);
static void writeCountersLine(SFSample *sample);
#ifdef __SUNPRO_C
static void receiveError(SFSample *sample, char *errm, int hexdump);
#pragma does_not_return (receiveError)
#else
static void receiveError(SFSample *sample, char *errm, int hexdump) __attribute__ ((noreturn));
#endif
static inline void skipBytes(SFSample *sample, int skip);
static inline uint32_t sf_log_next32(SFSample *sample, char *fieldName);
static inline uint64_t sf_log_next64(SFSample *sample, char *fieldName);
static inline void sf_log_percentage(SFSample *sample, char *fieldName);
static inline uint32_t getString(SFSample *sample, char *buf, int bufLen);
static inline uint32_t getAddress(SFSample *sample, SFLAddress *address);
static inline char *printTag(uint32_t tag, char *buf, int bufLen);
static inline void skipTLVRecord(SFSample *sample, uint32_t tag, uint32_t len, char *description);
static inline void readSFlowDatagram(SFSample *sample, FlowSource_t *fs);
static inline void readFlowSample(SFSample *sample, int expanded, FlowSource_t *fs);
static inline void readCountersSample(SFSample *sample, int expanded, FlowSource_t *fs);
static inline void readFlowSample_v2v4(SFSample *sample, FlowSource_t *fs);
static inline void readCountersSample_v2v4(SFSample *sample, FlowSource_t *fs);
static inline void StoreSflowRecord(SFSample *sample, FlowSource_t *fs);
extern int verbose;
/*_________________---------------------------__________________
_________________ printHex __________________
-----------------___________________________------------------
*/
static u_char bin2hex(int nib) { return (nib < 10) ? ('0' + nib) : ('A' - 10 + nib); }
static int printHex(const u_char *a, int len, char *buf, int bufLen, int marker, int bytesPerOutputLine) {
int b = 0, i = 0;
for(; i < len; i++) {
u_char byte;
if(b > (bufLen - 10)) break;
if(marker > 0 && i == marker) {
buf[b++] = '<';
buf[b++] = '*';
buf[b++] = '>';
buf[b++] = '-';
}
byte = a[i];
buf[b++] = bin2hex(byte >> 4);
buf[b++] = bin2hex(byte & 0x0f);
if(i > 0 && (i % bytesPerOutputLine) == 0) buf[b++] = '\n';
else {
// separate the bytes with a dash
if (i < (len - 1)) buf[b++] = '-';
}
}
buf[b] = '\0';
return b;
}
/*_________________---------------------------__________________
_________________ IP_to_a __________________
-----------------___________________________------------------
*/
static char *IP_to_a(uint32_t ipaddr, char *buf, int buflen) {
u_char *ip = (u_char *)&ipaddr;
snprintf(buf, buflen, "%u.%u.%u.%u", ip[0], ip[1], ip[2], ip[3]);
buf[buflen-1] = '\0';
return buf;
}
static char *printAddress(SFLAddress *address, char *buf, int bufLen) {
if(address->type == SFLADDRESSTYPE_IP_V4)
IP_to_a(address->address.ip_v4.s_addr, buf, bufLen);
else {
u_char *b = address->address.ip_v6.s6_addr;
snprintf(buf, bufLen, "%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x:%02x%02x",
b[0],b[1],b[2],b[3],b[4],b[5],b[6],b[7],b[8],b[9],b[10],b[11],b[12],b[13],b[14],b[15]);
}
return buf;
}
/*_________________---------------------------__________________
_________________ writeFlowLine __________________
-----------------___________________________------------------
*/
static void writeFlowLine(SFSample *sample) {
char agentIP[51], srcIP[51], dstIP[51];
// source
printf("FLOW,%s,%d,%d,",
printAddress(&sample->agent_addr, agentIP, 50),
sample->inputPort,
sample->outputPort);
// layer 2
printf("%02x%02x%02x%02x%02x%02x,%02x%02x%02x%02x%02x%02x,0x%04x,%d,%d",
sample->eth_src[0],
sample->eth_src[1],
sample->eth_src[2],
sample->eth_src[3],
sample->eth_src[4],
sample->eth_src[5],
sample->eth_dst[0],
sample->eth_dst[1],
sample->eth_dst[2],
sample->eth_dst[3],
sample->eth_dst[4],
sample->eth_dst[5],
sample->eth_type,
sample->in_vlan,
sample->out_vlan);
// layer 3/4
printf(",IP: %s,%s,%d,0x%02x,%d,%d,%d,0x%02x",
IP_to_a(sample->dcd_srcIP.s_addr, srcIP, 51),
IP_to_a(sample->dcd_dstIP.s_addr, dstIP, 51),
sample->dcd_ipProtocol,
sample->dcd_ipTos,
sample->dcd_ipTTL,
sample->dcd_sport,
sample->dcd_dport,
sample->dcd_tcpFlags);
// bytes
printf(",%d,%d,%d\n",
sample->sampledPacketSize,
sample->sampledPacketSize - sample->stripped - sample->offsetToIPV4,
sample->meanSkipCount);
}
/*_________________---------------------------__________________
_________________ writeCountersLine __________________
-----------------___________________________------------------
*/
static void writeCountersLine(SFSample *sample)
{
// source
char agentIP[51];
printf("CNTR,%s,", printAddress(&sample->agent_addr, agentIP, 50));
printf("%u,%u,%llu,%u,%u,%llu,%u,%u,%u,%u,%u,%u,%llu,%u,%u,%u,%u,%u,%u\n",
sample->ifCounters.ifIndex,
sample->ifCounters.ifType,
(unsigned long long)sample->ifCounters.ifSpeed,
sample->ifCounters.ifDirection,
sample->ifCounters.ifStatus,
(unsigned long long)sample->ifCounters.ifInOctets,
sample->ifCounters.ifInUcastPkts,
sample->ifCounters.ifInMulticastPkts,
sample->ifCounters.ifInBroadcastPkts,
sample->ifCounters.ifInDiscards,
sample->ifCounters.ifInErrors,
sample->ifCounters.ifInUnknownProtos,
(unsigned long long)sample->ifCounters.ifOutOctets,
sample->ifCounters.ifOutUcastPkts,
sample->ifCounters.ifOutMulticastPkts,
sample->ifCounters.ifOutBroadcastPkts,
sample->ifCounters.ifOutDiscards,
sample->ifCounters.ifOutErrors,
sample->ifCounters.ifPromiscuousMode);
}
/*_________________---------------------------__________________
_________________ receiveError __________________
-----------------___________________________------------------
*/
static void receiveError(SFSample *sample, char *errm, int hexdump)
{
char ipbuf[51];
char scratch[6000];
char *msg = "";
char *hex = "";
uint32_t markOffset = (u_char *)sample->datap - sample->rawSample;
if(errm) msg = errm;
if(hexdump) {
printHex(sample->rawSample, sample->rawSampleLen, scratch, 6000, markOffset, 16);
hex = scratch;
}
LogError("SFLOW: %s (source IP = %s) %s", msg, IP_to_a(sample->sourceIP.s_addr, ipbuf, 51), hex);
SFABORT(sample, SF_ABORT_DECODE_ERROR);
}
/*_________________---------------------------__________________
_________________ lengthCheck __________________
-----------------___________________________------------------
*/
static void lengthCheck(SFSample *sample, char *description, u_char *start, int len) {
uint32_t actualLen = (u_char *)sample->datap - start;
uint32_t adjustedLen = ((len + 3) >> 2) << 2;
if(actualLen != adjustedLen) {
dbg_printf("%s length error (expected %d, found %d)\n", description, len, actualLen);
LogError("SFLOW: %s length error (expected %d, found %d)", description, len, actualLen);
SFABORT(sample, SF_ABORT_LENGTH_ERROR);
}
}
/*_________________---------------------------__________________
_________________ decodeLinkLayer __________________
-----------------___________________________------------------
store the offset to the start of the ipv4 header in the sequence_number field
or -1 if not found. Decode the 802.1d if it's there.
*/
#define NFT_ETHHDR_SIZ 14
#define NFT_8022_SIZ 3
#define NFT_MAX_8023_LEN 1500
#define NFT_MIN_SIZ (NFT_ETHHDR_SIZ + sizeof(struct myiphdr))
static void decodeLinkLayer(SFSample *sample)
{
u_char *start = (u_char *)sample->header;
u_char *end = start + sample->headerLen;
u_char *ptr = start;
uint16_t type_len;
/* assume not found */
sample->gotIPV4 = NO;
if(sample->headerLen < NFT_ETHHDR_SIZ) return; /* not enough for an Ethernet header */
dbg_printf("dstMAC %02x%02x%02x%02x%02x%02x\n", ptr[0], ptr[1], ptr[2], ptr[3], ptr[4], ptr[5]);
memcpy(sample->eth_dst, ptr, 6);
ptr += 6;
dbg_printf("srcMAC %02x%02x%02x%02x%02x%02x\n", ptr[0], ptr[1], ptr[2], ptr[3], ptr[4], ptr[5]);
memcpy(sample->eth_src, ptr, 6);
ptr += 6;
type_len = (ptr[0] << 8) + ptr[1];
ptr += 2;
if(type_len == 0x8100) {
/* VLAN - next two bytes */
uint32_t vlanData = (ptr[0] << 8) + ptr[1];
uint32_t vlan = vlanData & 0x0fff;
#ifdef DEVEL
uint32_t priority = vlanData >> 13;
#endif
ptr += 2;
/* _____________________________________ */
/* | pri | c | vlan-id | */
/* ------------------------------------- */
/* [priority = 3bits] [Canonical Format Flag = 1bit] [vlan-id = 12 bits] */
dbg_printf("decodedVLAN %u\n", vlan);
dbg_printf("decodedPriority %u\n", priority);
sample->in_vlan = vlan;
/* now get the type_len again (next two bytes) */
type_len = (ptr[0] << 8) + ptr[1];
ptr += 2;
}
/* now we're just looking for IP */
if(sample->headerLen < NFT_MIN_SIZ) return; /* not enough for an IPv4 header */
/* peek for IPX */
if(type_len == 0x0200 || type_len == 0x0201 || type_len == 0x0600) {
#define IPX_HDR_LEN 30
#define IPX_MAX_DATA 546
int ipxChecksum = (ptr[0] == 0xff && ptr[1] == 0xff);
int ipxLen = (ptr[2] << 8) + ptr[3];
if(ipxChecksum &&
ipxLen >= IPX_HDR_LEN &&
ipxLen <= (IPX_HDR_LEN + IPX_MAX_DATA))
/* we don't do anything with IPX here */
return;
}
if(type_len <= NFT_MAX_8023_LEN) {
/* assume 802.3+802.2 header */
/* check for SNAP */
if(ptr[0] == 0xAA &&
ptr[1] == 0xAA &&
ptr[2] == 0x03) {
ptr += 3;
if(ptr[0] != 0 ||
ptr[1] != 0 ||
ptr[2] != 0) {
dbg_printf("VSNAP_OUI %02X-%02X-%02X\n", ptr[0], ptr[1], ptr[2]);
return; /* no further decode for vendor-specific protocol */
}
ptr += 3;
/* OUI == 00-00-00 means the next two bytes are the ethernet type (RFC 2895) */
type_len = (ptr[0] << 8) + ptr[1];
ptr += 2;
}
else {
if (ptr[0] == 0x06 &&
ptr[1] == 0x06 &&
(ptr[2] & 0x01)) {
/* IP over 8022 */
ptr += 3;
/* force the type_len to be IP so we can inline the IP decode below */
type_len = 0x0800;
}
else return;
}
}
/* assume type_len is an ethernet-type now */
sample->eth_type = type_len;
if(type_len == 0x0800) {
/* IPV4 */
if((end - ptr) < sizeof(struct myiphdr)) return;
/* look at first byte of header.... */
/* ___________________________ */
/* | version | hdrlen | */
/* --------------------------- */
if((*ptr >> 4) != 4) return; /* not version 4 */
if((*ptr & 15) < 5) return; /* not IP (hdr len must be 5 quads or more) */
/* survived all the tests - store the offset to the start of the ip header */
sample->gotIPV4 = YES;
sample->offsetToIPV4 = (ptr - start);
}
if(type_len == 0x86DD) {
/* IPV6 */
/* look at first byte of header.... */
if((*ptr >> 4) != 6) return; /* not version 6 */
/* survived all the tests - store the offset to the start of the ip6 header */
sample->gotIPV6 = YES;
sample->offsetToIPV6 = (ptr - start);
}
}
/*_________________---------------------------__________________
_________________ decodeIPLayer4 __________________
-----------------___________________________------------------
*/
static void decodeIPLayer4(SFSample *sample, u_char *ptr, uint32_t ipProtocol) {
u_char *end = sample->header + sample->headerLen;
if(ptr > (end - 8)) return; // not enough header bytes left
switch(ipProtocol) {
case 1: /* ICMP */
case 58: /* ICMP6 */
{
struct myicmphdr icmp;
memcpy(&icmp, ptr, sizeof(icmp));
dbg_printf("ICMPType %u\n", icmp.type);
dbg_printf("ICMPCode %u\n", icmp.code);
sample->dcd_sport = icmp.type;
sample->dcd_dport = icmp.code;
}
break;
case 6: /* TCP */
{
struct mytcphdr tcp;
memcpy(&tcp, ptr, sizeof(tcp));
sample->dcd_sport = ntohs(tcp.th_sport);
sample->dcd_dport = ntohs(tcp.th_dport);
sample->dcd_tcpFlags = tcp.th_flags;
dbg_printf("TCPSrcPort %u\n", sample->dcd_sport);
dbg_printf("TCPDstPort %u\n",sample->dcd_dport);
dbg_printf("TCPFlags %u\n", sample->dcd_tcpFlags);
if(sample->dcd_dport == 80) {
int bytesLeft;
int headerBytes = (tcp.th_off_and_unused >> 4) * 4;
ptr += headerBytes;
bytesLeft = sample->header + sample->headerLen - ptr;
}
}
break;
case 17: /* UDP */
{
struct myudphdr udp;
memcpy(&udp, ptr, sizeof(udp));
sample->dcd_sport = ntohs(udp.uh_sport);
sample->dcd_dport = ntohs(udp.uh_dport);
sample->udp_pduLen = ntohs(udp.uh_ulen);
dbg_printf("UDPSrcPort %u\n", sample->dcd_sport);
dbg_printf("UDPDstPort %u\n", sample->dcd_dport);
dbg_printf("UDPBytes %u\n", sample->udp_pduLen);
}
break;
default: /* some other protcol */
break;
}
}
/*_________________---------------------------__________________
_________________ decodeIPV4 __________________
-----------------___________________________------------------
*/
static void decodeIPV4(SFSample *sample)
{
if(sample->gotIPV4) {
#ifdef DEVEL
char buf[51];
#endif
u_char *ptr = sample->header + sample->offsetToIPV4;
/* Create a local copy of the IP header (cannot overlay structure in case it is not quad-aligned...some
platforms would core-dump if we tried that). It's OK coz this probably performs just as well anyway. */
struct myiphdr ip;
memcpy(&ip, ptr, sizeof(ip));
/* Value copy all ip elements into sample */
sample->dcd_srcIP.s_addr = ip.saddr;
sample->dcd_dstIP.s_addr = ip.daddr;
sample->dcd_ipProtocol = ip.protocol;
sample->dcd_ipTos = ip.tos;
sample->dcd_ipTTL = ip.ttl;
dbg_printf("ip.tot_len %d\n", ntohs(ip.tot_len));
/* Log out the decoded IP fields */
dbg_printf("srcIP %s\n", IP_to_a(sample->dcd_srcIP.s_addr, buf, 51));
dbg_printf("dstIP %s\n", IP_to_a(sample->dcd_dstIP.s_addr, buf, 51));
dbg_printf("IPProtocol %u\n", sample->dcd_ipProtocol);
dbg_printf("IPTOS %u\n", sample->dcd_ipTos);
dbg_printf("IPTTL %u\n", sample->dcd_ipTTL);
/* check for fragments */
sample->ip_fragmentOffset = ntohs(ip.frag_off) & 0x1FFF;
if(sample->ip_fragmentOffset > 0) {
dbg_printf("IPFragmentOffset %u\n", sample->ip_fragmentOffset);
}
else {
dbg_printf("Unfragmented\n");
/* advance the pointer to the next protocol layer */
/* ip headerLen is expressed as a number of quads */
ptr += (ip.version_and_headerLen & 0x0f) * 4;
decodeIPLayer4(sample, ptr, ip.protocol);
}
}
}
/*_________________---------------------------__________________
_________________ decodeIPV6 __________________
-----------------___________________________------------------
*/
static void decodeIPV6(SFSample *sample)
{
uint16_t payloadLen;
uint32_t label;
uint32_t nextHeader;
u_char *end = sample->header + sample->headerLen;
if(sample->gotIPV6) {
u_char *ptr = sample->header + sample->offsetToIPV6;
// check the version
{
int ipVersion = (*ptr >> 4);
if(ipVersion != 6) {
dbg_printf("header decode error: unexpected IP version: %d\n", ipVersion);
return;
}
}
// get the tos (priority)
sample->dcd_ipTos = *ptr++ & 15;
dbg_printf("IPTOS %u\n", sample->dcd_ipTos);
// 24-bit label
label = *ptr++;
label <<= 8;
label += *ptr++;
label <<= 8;
label += *ptr++;
dbg_printf("IP6_label 0x%x\n", label);
// payload
payloadLen = (ptr[0] << 8) + ptr[1];
ptr += 2;
// if payload is zero, that implies a jumbo payload
if(payloadLen == 0) dbg_printf("IPV6_payloadLen <jumbo>\n");
else dbg_printf("IPV6_payloadLen %u\n", payloadLen);
// next header
nextHeader = *ptr++;
// TTL
sample->dcd_ipTTL = *ptr++;
dbg_printf("IPTTL %u\n", sample->dcd_ipTTL);
{// src and dst address
#ifdef DEVEL
char buf[101];
#endif
sample->ipsrc.type = SFLADDRESSTYPE_IP_V6;
memcpy(&sample->ipsrc.address, ptr, 16);
ptr +=16;
dbg_printf("srcIP6 %s\n", printAddress(&sample->ipsrc, buf, 100));
sample->ipdst.type = SFLADDRESSTYPE_IP_V6;
memcpy(&sample->ipdst.address, ptr, 16);
ptr +=16;
dbg_printf("dstIP6 %s\n", printAddress(&sample->ipdst, buf, 100));
}
// skip over some common header extensions...
// http://searchnetworking.techtarget.com/originalContent/0,289142,sid7_gci870277,00.html
while(nextHeader == 0 || // hop
nextHeader == 43 || // routing
nextHeader == 44 || // fragment
// nextHeader == 50 || // encryption - don't bother coz we'll not be able to read any further
nextHeader == 51 || // auth
nextHeader == 60) { // destination options
uint32_t optionLen, skip;
dbg_printf("IP6HeaderExtension: %d\n", nextHeader);
nextHeader = ptr[0];
optionLen = 8 * (ptr[1] + 1); // second byte gives option len in 8-byte chunks, not counting first 8
skip = optionLen - 2;
ptr += skip;
if(ptr > end) return; // ran off the end of the header
}
// now that we have eliminated the extension headers, nextHeader should have what we want to
// remember as the ip protocol...
sample->dcd_ipProtocol = nextHeader;
dbg_printf("IPProtocol %u\n", sample->dcd_ipProtocol);
decodeIPLayer4(sample, ptr, sample->dcd_ipProtocol);
}
}
#include "inline.c"
#include "nffile_inline.c"
#include "collector_inline.c"
/*_________________---------------------------__________________
_________________ StoreSflowRecord __________________
-----------------___________________________------------------
*/
static inline void StoreSflowRecord(SFSample *sample, FlowSource_t *fs) {
common_record_t *common_record;
stat_record_t *stat_record = fs->nffile->stat_record;
exporter_sflow_t *exporter;
extension_map_t *extension_map;
struct timeval now;
void *next_data;
value32_t *val;
uint32_t bytes, j, id, ipsize, ip_flags;
uint64_t _bytes, _packets, _t; // tmp buffers
dbg_printf("StoreSflowRecord\n");
gettimeofday(&now, NULL);
if( sample->ip_fragmentOffset > 0 ) {
sample->dcd_sport = 0;
sample->dcd_dport = 0;
}
bytes = sample->sampledPacketSize;
ip_flags = 0;
if ( sample->nextHop.type == SFLADDRESSTYPE_IP_V6 )
SetFlag(ip_flags, SFLOW_NEXT_HOP);
if ( sample->bgp_nextHop.type == SFLADDRESSTYPE_IP_V6 )
SetFlag(ip_flags, SFLOW_NEXT_HOP_BGP);
if ( fs->sa_family == AF_INET6 )
SetFlag(ip_flags, SFLOW_ROUTER_IP);
ip_flags &= IP_extension_mask;
if ( ip_flags >= MAX_SFLOW_EXTENSIONS ) {
LogError("SFLOW: Corrupt ip_flags: %u", ip_flags);
}
exporter = GetExporter(fs, sample->agentSubId, sample->meanSkipCount);
if ( !exporter ) {
LogError("SFLOW: Exporter NULL: Abort sflow record processing");
return;
}
exporter->packets++;
// get appropriate extension map
extension_map = exporter->sflow_extension_info[ip_flags].map;
if ( !extension_map ) {
LogInfo("SFLOW: setup extension map: %u", ip_flags);
if ( !Setup_Extension_Info(fs, exporter, ip_flags ) ) {
LogError("SFLOW: Extension map: NULL: Abort sflow record processing");
return;
}
extension_map = exporter->sflow_extension_info[ip_flags].map;
LogInfo("SFLOW: setup extension map: %u done", ip_flags);
}
// output buffer size check
// IPv6 needs 2 x 16 bytes, IPv4 2 x 4 bytes
ipsize = sample->gotIPV6 ? 32 : 8;
if ( !CheckBufferSpace(fs->nffile, sflow_output_record_size[ip_flags] + ipsize )) {
// fishy! - should never happen. maybe disk full?
LogError("SFLOW: output buffer size error. Abort sflow record processing");
return;
}
dbg_printf("Fill Record\n");
common_record = (common_record_t *)fs->nffile->buff_ptr;
common_record->size = sflow_output_record_size[ip_flags] + ipsize;
common_record->type = CommonRecordType;
common_record->flags = 0;
SetFlag(common_record->flags, FLAG_SAMPLED);
common_record->exporter_sysid = exporter->info.sysid;
common_record->ext_map = extension_map->map_id;
common_record->first = now.tv_sec;
common_record->last = common_record->first;
common_record->msec_first = now.tv_usec / 1000;
common_record->msec_last = common_record->msec_first;
_t = 1000*now.tv_sec + common_record->msec_first; // tmp buff for first_seen
common_record->fwd_status = 0;
common_record->reserved = 0;
common_record->tcp_flags = sample->dcd_tcpFlags;
common_record->prot = sample->dcd_ipProtocol;
common_record->tos = sample->dcd_ipTos;
common_record->srcport = (uint16_t)sample->dcd_sport;
common_record->dstport = (uint16_t)sample->dcd_dport;
if(sample->gotIPV6) {
u_char *b;
uint64_t *u;
ipv6_block_t *ipv6 = (ipv6_block_t *)common_record->data;
SetFlag(common_record->flags, FLAG_IPV6_ADDR);
b = sample->ipsrc.address.ip_v6.s6_addr;
u = (uint64_t *)b;
ipv6->srcaddr[0] = ntohll(*u);
u = (uint64_t *)&(b[8]);
ipv6->srcaddr[1] = ntohll(*u);
b = sample->ipdst.address.ip_v6.s6_addr;
u = (uint64_t *)b;
ipv6->dstaddr[0] = ntohll(*u);
u = (uint64_t *)&(b[8]);
ipv6->dstaddr[1] = ntohll(*u);
next_data = (void *)ipv6->data;
} else {
ipv4_block_t *ipv4 = (ipv4_block_t *)common_record->data;
ipv4->srcaddr = ntohl(sample->dcd_srcIP.s_addr);
ipv4->dstaddr = ntohl(sample->dcd_dstIP.s_addr);
next_data = (void *)ipv4->data;
}
// 4 byte Packet value
val = (value32_t *)next_data;
val->val = sample->meanSkipCount;
_packets = val->val;
// 4 byte Bytes value
val = (value32_t *)val->data;
val->val = sample->meanSkipCount * bytes;
_bytes = val->val;
next_data = (void *)val->data;
j = 0;
while ( (id = extension_map->ex_id[j]) != 0 ) {
switch (id) {
case EX_IO_SNMP_4: { // 4 byte input/output interface index
tpl_ext_5_t *tpl = (tpl_ext_5_t *)next_data;
tpl->input = sample->inputPort;
tpl->output = sample->outputPort;
next_data = (void *)tpl->data;
} break;
case EX_AS_4: { // 4 byte src/dst AS number
tpl_ext_7_t *tpl = (tpl_ext_7_t *)next_data;
tpl->src_as = sample->src_as;
tpl->dst_as = sample->dst_as;
next_data = (void *)tpl->data;
} break;
case EX_VLAN: { // 2 byte valn label
tpl_ext_13_t *tpl = (tpl_ext_13_t *)next_data;
tpl->src_vlan = sample->in_vlan;
tpl->dst_vlan = sample->out_vlan;
next_data = (void *)tpl->data;
} break;
case EX_MULIPLE: { // dst tos, direction, src/dst mask
tpl_ext_8_t *tpl = (tpl_ext_8_t *)next_data;
tpl->dst_tos = sample->dcd_ipTos;
tpl->dir = 0;
tpl->src_mask = sample->srcMask;
tpl->dst_mask = sample->dstMask;
next_data = (void *)tpl->data;
} break;
case EX_MAC_1: { // MAC addreses
tpl_ext_20_t *tpl = (tpl_ext_20_t *)next_data;
tpl->in_src_mac = Get_val48((void *)&sample->eth_src);
tpl->out_dst_mac = Get_val48((void *)&sample->eth_dst);
next_data = (void *)tpl->data;
} break;
case EX_NEXT_HOP_v4: { // next hop IPv4 router address
tpl_ext_9_t *tpl = (tpl_ext_9_t *)next_data;
if ( sample->nextHop.type == SFLADDRESSTYPE_IP_V4 ) {
tpl->nexthop = ntohl(sample->nextHop.address.ip_v4.s_addr);
} else {
tpl->nexthop = 0;
}
next_data = (void *)tpl->data;
} break;
case EX_NEXT_HOP_v6: { // next hop IPv6 router address
tpl_ext_10_t *tpl = (tpl_ext_10_t *)next_data;
void *ptr = (void *)sample->nextHop.address.ip_v6.s6_addr;
if ( sample->nextHop.type == SFLADDRESSTYPE_IP_V6 ) {
tpl->nexthop[0] = ntohll(((uint64_t *)ptr)[0]);
tpl->nexthop[1] = ntohll(((uint64_t *)ptr)[1]);
} else {
tpl->nexthop[0] = 0;
tpl->nexthop[1] = 0;
}
SetFlag(common_record->flags, FLAG_IPV6_NH);
next_data = (void *)tpl->data;
} break;
case EX_NEXT_HOP_BGP_v4: { // next hop bgp IPv4 router address
tpl_ext_11_t *tpl = (tpl_ext_11_t *)next_data;
if ( sample->bgp_nextHop.type == SFLADDRESSTYPE_IP_V4 ) {
tpl->bgp_nexthop = ntohl(sample->bgp_nextHop.address.ip_v4.s_addr);
} else {
tpl->bgp_nexthop = 0;
}
next_data = (void *)tpl->data;
} break;
case EX_NEXT_HOP_BGP_v6: { // next hop IPv4 router address
tpl_ext_12_t *tpl = (tpl_ext_12_t *)next_data;
void *ptr = (void *)sample->bgp_nextHop.address.ip_v6.s6_addr;
if ( sample->bgp_nextHop.type == SFLADDRESSTYPE_IP_V6 ) {
tpl->bgp_nexthop[0] = ntohll(((uint64_t *)ptr)[0]);
tpl->bgp_nexthop[1] = ntohll(((uint64_t *)ptr)[1]);
} else {
tpl->bgp_nexthop[0] = 0;
tpl->bgp_nexthop[1] = 0;
}
SetFlag(common_record->flags, FLAG_IPV6_NHB);
next_data = (void *)tpl->data;
} break;
case EX_ROUTER_IP_v4:
case EX_ROUTER_IP_v6: // IPv4/IPv6 router address
if(sample->agent_addr.type == SFLADDRESSTYPE_IP_V4) {
tpl_ext_23_t *tpl = (tpl_ext_23_t *)next_data;
tpl->router_ip = ntohl(sample->agent_addr.address.ip_v4.s_addr);
next_data = (void *)tpl->data;
ClearFlag(common_record->flags, FLAG_IPV6_EXP);
} else {
tpl_ext_24_t *tpl = (tpl_ext_24_t *)next_data;
void *ptr = (void *)sample->agent_addr.address.ip_v6.s6_addr;
tpl->router_ip[0] = ntohll(((uint64_t *)ptr)[0]);
tpl->router_ip[1] = ntohll(((uint64_t *)ptr)[1]);
next_data = (void *)tpl->data;
SetFlag(common_record->flags, FLAG_IPV6_EXP);
}
break;
case EX_RECEIVED: {
tpl_ext_27_t *tpl = (tpl_ext_27_t *)next_data;
tpl->received = (uint64_t)((uint64_t)fs->received.tv_sec * 1000LL) + (uint64_t)((uint64_t)fs->received.tv_usec / 1000LL);
next_data = (void *)tpl->data;
} break;
default:
// this should never happen
LogError("SFLOW: Unexpected extension %i for sflow record. Skip extension", id);
dbg_printf("SFLOW: Unexpected extension %i for sflow record. Skip extension", id);
}
j++;
}
/*
if(sfConfig.netFlowPeerAS) {
pkt.flow.srcAS = htons((uint16_t)sample->src_peer_as);
pkt.flow.dstAS = htons((uint16_t)sample->dst_peer_as);
}
else {
pkt.flow.srcAS = htons((uint16_t)sample->src_as);
pkt.flow.dstAS = htons((uint16_t)sample->dst_as);
}
*/
// update first_seen, last_seen
if ( _t < fs->first_seen ) // the very first time stamp need to be set
fs->first_seen = _t;
fs->last_seen = _t;
// Update stats
switch (common_record->prot) {
case 1:
stat_record->numflows_icmp++;
stat_record->numpackets_icmp += _packets;
stat_record->numbytes_icmp += _bytes;
break;
case 6:
stat_record->numflows_tcp++;
stat_record->numpackets_tcp += _packets;
stat_record->numbytes_tcp += _bytes;
break;
case 17:
stat_record->numflows_udp++;
stat_record->numpackets_udp += _packets;
stat_record->numbytes_udp += _bytes;
break;
default:
stat_record->numflows_other++;
stat_record->numpackets_other += _packets;
stat_record->numbytes_other += _bytes;
}
exporter->flows++;
stat_record->numflows++;
stat_record->numpackets += _packets;
stat_record->numbytes += _bytes;
if ( verbose ) {
master_record_t master_record;
char *string;
ExpandRecord_v2((common_record_t *)common_record, &exporter->sflow_extension_info[ip_flags], &(exporter->info), &master_record);
format_file_block_record(&master_record, &string, 0);
printf("%s\n", string);
}
// update file record size ( -> output buffer size )
fs->nffile->block_header->NumRecords++;
fs->nffile->block_header->size += (sflow_output_record_size[ip_flags] + ipsize);
#ifdef DEVEL
if ( (next_data - fs->nffile->buff_ptr) != (sflow_output_record_size[ip_flags] + ipsize) ) {
printf("PANIC: Size error. Buffer diff: %llu, Size: %u\n",
(unsigned long long)(next_data - fs->nffile->buff_ptr),
(sflow_output_record_size[ip_flags] + ipsize));
exit(255);
}
#endif
fs->nffile->buff_ptr = next_data;
}
/*_________________---------------------------__________________
_________________ read data fns __________________
-----------------___________________________------------------
*/
static inline uint32_t getData32(SFSample *sample) {
if ((u_char *)sample->datap > sample->endp)
SFABORT(sample, SF_ABORT_EOS);
return ntohl(*(sample->datap)++);
} // End of getData32
static inline uint32_t getData32_nobswap(SFSample *sample) {
if ((u_char *)sample->datap > sample->endp)
SFABORT(sample, SF_ABORT_EOS);
return *(sample->datap)++;
} // End of getData32_nobswap
static inline uint64_t getData64(SFSample *sample) {
uint64_t tmpLo, tmpHi;
tmpHi = getData32(sample);
tmpLo = getData32(sample);
return (tmpHi << 32) + tmpLo;
} // End of getData64
static inline void skipBytes(SFSample *sample, int skip) {
int quads = (skip + 3) / 4;
sample->datap += quads;
if ( (u_char *)sample->datap > sample->endp)
SFABORT(sample, SF_ABORT_EOS);
} // End of skipBytes
static inline uint32_t sf_log_next32(SFSample *sample, char *fieldName) {
uint32_t val = getData32(sample);
dbg_printf("%s %u\n", fieldName, val);
return val;
} // End of sf_log_next32
static inline uint64_t sf_log_next64(SFSample *sample, char *fieldName) {
uint64_t val64 = getData64(sample);
dbg_printf("%s %llu\n", fieldName, (unsigned long long)val64);
return val64;
} // End of sf_log_next64
static inline void sf_log_percentage(SFSample *sample, char *fieldName) {
uint32_t hundredths = getData32(sample);
if ( hundredths == (uint32_t)-1)
dbg_printf("%s unknown\n", fieldName);
else {
#ifdef DEVEL
float percent = (float)hundredths / 10.0;
#endif
dbg_printf("%s %.1f\n", fieldName, percent);
}
} // End of sf_log_percentage
static inline uint32_t getString(SFSample *sample, char *buf, int bufLen) {
uint32_t len, read_len;
len = getData32(sample);
// truncate if too long
read_len = (len >= bufLen) ? (bufLen - 1) : len;
memcpy(buf, sample->datap, read_len);
buf[read_len] = '\0'; // null terminate
skipBytes(sample, len);
return len;
} // End of getString
static inline uint32_t getAddress(SFSample *sample, SFLAddress *address) {
address->type = getData32(sample);
if(address->type == SFLADDRESSTYPE_IP_V4)
address->address.ip_v4.s_addr = getData32_nobswap(sample);
else {
memcpy(&address->address.ip_v6.s6_addr, sample->datap, 16);
skipBytes(sample, 16);
}
return address->type;
} // End of getAddress
static inline char *printTag(uint32_t tag, char *buf, int bufLen) {
snprintf(buf, bufLen, "%u:%u", (tag >> 12), (tag & 0x00000FFF));
return buf;
} // End of printTag
static inline void skipTLVRecord(SFSample *sample, uint32_t tag, uint32_t len, char *description) {
#ifdef DEVEL
char buf[51];
#endif
dbg_printf("skipping unknown %s: 0x%x, %s len=%d\n", description, tag, printTag(tag, buf, 50), len);
skipBytes(sample, len);
} // End of skipTLVRecord
/*_________________---------------------------__________________
_________________ readExtendedSwitch __________________
-----------------___________________________------------------
*/
static void readExtendedSwitch(SFSample *sample)
{
dbg_printf("extendedType SWITCH\n");
sample->in_vlan = getData32(sample);
sample->in_priority = getData32(sample);
sample->out_vlan = getData32(sample);
sample->out_priority = getData32(sample);
sample->extended_data_tag |= SASAMPLE_EXTENDED_DATA_SWITCH;
dbg_printf("in_vlan %u\n", sample->in_vlan);
dbg_printf("in_priority %u\n", sample->in_priority);
dbg_printf("out_vlan %u\n", sample->out_vlan);
dbg_printf("out_priority %u\n", sample->out_priority);
}
/*_________________---------------------------__________________
_________________ readExtendedRouter __________________
-----------------___________________________------------------
*/
static void readExtendedRouter(SFSample *sample)
{
#ifdef DEVEL
char buf[51];
#endif
dbg_printf("extendedType ROUTER\n");
getAddress(sample, &sample->nextHop);
sample->srcMask = getData32(sample);
sample->dstMask = getData32(sample);
sample->extended_data_tag |= SASAMPLE_EXTENDED_DATA_ROUTER;
dbg_printf("nextHop %s\n", printAddress(&sample->nextHop, buf, 50));
dbg_printf("srcSubnetMask %u\n", sample->srcMask);
dbg_printf("dstSubnetMask %u\n", sample->dstMask);
}
/*_________________---------------------------__________________
_________________ readExtendedGateway_v2 __________________
-----------------___________________________------------------
*/
static void readExtendedGateway_v2(SFSample *sample)
{
dbg_printf("extendedType GATEWAY\n");
sample->my_as = getData32(sample);
sample->src_as = getData32(sample);
sample->src_peer_as = getData32(sample);
sample->dst_as_path_len = getData32(sample);
/* just point at the dst_as_path array */
if(sample->dst_as_path_len > 0) {
sample->dst_as_path = sample->datap;
/* and skip over it in the input */
skipBytes(sample, sample->dst_as_path_len * 4);
// fill in the dst and dst_peer fields too
sample->dst_peer_as = ntohl(sample->dst_as_path[0]);
sample->dst_as = ntohl(sample->dst_as_path[sample->dst_as_path_len - 1]);
}
sample->extended_data_tag |= SASAMPLE_EXTENDED_DATA_GATEWAY;
dbg_printf("my_as %u\n", sample->my_as);
dbg_printf("src_as %u\n", sample->src_as);
dbg_printf("src_peer_as %u\n", sample->src_peer_as);
dbg_printf("dst_as %u\n", sample->dst_as);
dbg_printf("dst_peer_as %u\n", sample->dst_peer_as);
dbg_printf("dst_as_path_len %u\n", sample->dst_as_path_len);
if(sample->dst_as_path_len > 0) {
uint32_t i = 0;
for(; i < sample->dst_as_path_len; i++) {
if(i == 0) dbg_printf("dst_as_path ");
else dbg_printf("-");
dbg_printf("%u", ntohl(sample->dst_as_path[i]));
}
dbg_printf("\n");
}
}
/*_________________---------------------------__________________
_________________ readExtendedGateway __________________
-----------------___________________________------------------
*/
static void readExtendedGateway(SFSample *sample)
{
#ifdef DEVEL
char buf[51];
#endif
uint32_t segments;
int seg;
dbg_printf("extendedType GATEWAY\n");
if(sample->datagramVersion >= 5) {
getAddress(sample, &sample->bgp_nextHop);
dbg_printf("bgp_nexthop %s\n", printAddress(&sample->bgp_nextHop, buf, 50));
}
sample->my_as = getData32(sample);
sample->src_as = getData32(sample);
sample->src_peer_as = getData32(sample);
dbg_printf("my_as %u\n", sample->my_as);
dbg_printf("src_as %u\n", sample->src_as);
dbg_printf("src_peer_as %u\n", sample->src_peer_as);
segments = getData32(sample);
if(segments > 0) {
dbg_printf("dst_as_path ");
for(seg = 0; seg < segments; seg++) {
uint32_t seg_type;
uint32_t seg_len;
int i;
seg_type = getData32(sample);
seg_len = getData32(sample);
for(i = 0; i < seg_len; i++) {
uint32_t asNumber;
asNumber = getData32(sample);
/* mark the first one as the dst_peer_as */
if(i == 0 && seg == 0) sample->dst_peer_as = asNumber;
else dbg_printf("-");
/* make sure the AS sets are in parentheses */
if(i == 0 && seg_type == SFLEXTENDED_AS_SET) dbg_printf("(");
dbg_printf("%u", asNumber);
/* mark the last one as the dst_as */
if(seg == (segments - 1) && i == (seg_len - 1)) sample->dst_as = asNumber;
}
if(seg_type == SFLEXTENDED_AS_SET) dbg_printf(")");
}
dbg_printf("\n");
}
dbg_printf("dst_as %u\n", sample->dst_as);
dbg_printf("dst_peer_as %u\n", sample->dst_peer_as);
sample->communities_len = getData32(sample);
/* just point at the communities array */
if(sample->communities_len > 0) sample->communities = sample->datap;
/* and skip over it in the input */
skipBytes(sample, sample->communities_len * 4);
sample->extended_data_tag |= SASAMPLE_EXTENDED_DATA_GATEWAY;
if(sample->communities_len > 0) {
int j = 0;
for(; j < sample->communities_len; j++) {
if(j == 0) dbg_printf("BGP_communities ");
else dbg_printf("-");
dbg_printf("%u", ntohl(sample->communities[j]));
}
dbg_printf("\n");
}
sample->localpref = getData32(sample);
dbg_printf("BGP_localpref %u\n", sample->localpref);
}
/*_________________---------------------------__________________
_________________ readExtendedUser __________________
-----------------___________________________------------------
*/
static void readExtendedUser(SFSample *sample)
{
dbg_printf("extendedType USER\n");
if(sample->datagramVersion >= 5) {
sample->src_user_charset = getData32(sample);
dbg_printf("src_user_charset %d\n", sample->src_user_charset);
}
sample->src_user_len = getString(sample, sample->src_user, SA_MAX_EXTENDED_USER_LEN);
if(sample->datagramVersion >= 5) {
sample->dst_user_charset = getData32(sample);
dbg_printf("dst_user_charset %d\n", sample->dst_user_charset);
}
sample->dst_user_len = getString(sample, sample->dst_user, SA_MAX_EXTENDED_USER_LEN);
sample->extended_data_tag |= SASAMPLE_EXTENDED_DATA_USER;
dbg_printf("src_user %s\n", sample->src_user);
dbg_printf("dst_user %s\n", sample->dst_user);
}
/*_________________---------------------------__________________
_________________ readExtendedUrl __________________
-----------------___________________________------------------
*/
static void readExtendedUrl(SFSample *sample)
{
dbg_printf("extendedType URL\n");
sample->url_direction = getData32(sample);
dbg_printf("url_direction %u\n", sample->url_direction);
sample->url_len = getString(sample, sample->url, SA_MAX_EXTENDED_URL_LEN);
dbg_printf("url %s\n", sample->url);
if(sample->datagramVersion >= 5) {
sample->host_len = getString(sample, sample->host, SA_MAX_EXTENDED_HOST_LEN);
dbg_printf("host %s\n", sample->host);
}
sample->extended_data_tag |= SASAMPLE_EXTENDED_DATA_URL;
}
/*_________________---------------------------__________________
_________________ mplsLabelStack __________________
-----------------___________________________------------------
*/
static void mplsLabelStack(SFSample *sample, char *fieldName)
{
SFLLabelStack lstk;
uint32_t lab;
lstk.depth = getData32(sample);
/* just point at the lablelstack array */
if(lstk.depth > 0)
lstk.stack = (uint32_t *)sample->datap;
else
lstk.stack = NULL;
/* and skip over it in the input */
skipBytes(sample, lstk.depth * 4);
if(lstk.depth > 0) {
int j = 0;
for(; j < lstk.depth; j++) {
if(j == 0) dbg_printf("%s ", fieldName);
else dbg_printf("-");
lab = ntohl(lstk.stack[j]);
dbg_printf("%u.%u.%u.%u",
(lab >> 12), // label
(lab >> 9) & 7, // experimental
(lab >> 8) & 1, // bottom of stack
(lab & 255)); // TTL
}
dbg_printf("\n");
}
}
/*_________________---------------------------__________________
_________________ readExtendedMpls __________________
-----------------___________________________------------------
*/
static void readExtendedMpls(SFSample *sample)
{
#ifdef DEVEL
char buf[51];
#endif
dbg_printf("extendedType MPLS\n");
getAddress(sample, &sample->mpls_nextHop);
dbg_printf("mpls_nexthop %s\n", printAddress(&sample->mpls_nextHop, buf, 50));
mplsLabelStack(sample, "mpls_input_stack");
mplsLabelStack(sample, "mpls_output_stack");
sample->extended_data_tag |= SASAMPLE_EXTENDED_DATA_MPLS;
}
/*_________________---------------------------__________________
_________________ readExtendedNat __________________
-----------------___________________________------------------
*/
static void readExtendedNat(SFSample *sample)
{
#ifdef DEVEL
char buf[51];
#endif
dbg_printf("extendedType NAT\n");
getAddress(sample, &sample->nat_src);
dbg_printf("nat_src %s\n", printAddress(&sample->nat_src, buf, 50));
getAddress(sample, &sample->nat_dst);
dbg_printf("nat_dst %s\n", printAddress(&sample->nat_dst, buf, 50));
sample->extended_data_tag |= SASAMPLE_EXTENDED_DATA_NAT;
}
/*_________________---------------------------__________________
_________________ readExtendedMplsTunnel __________________
-----------------___________________________------------------
*/
static void readExtendedMplsTunnel(SFSample *sample)
{
#define SA_MAX_TUNNELNAME_LEN 100
char tunnel_name[SA_MAX_TUNNELNAME_LEN+1];
uint32_t tunnel_id, tunnel_cos;
if(getString(sample, tunnel_name, SA_MAX_TUNNELNAME_LEN) > 0)
dbg_printf("mpls_tunnel_lsp_name %s\n", tunnel_name);
tunnel_id = getData32(sample);
dbg_printf("mpls_tunnel_id %u\n", tunnel_id);
tunnel_cos = getData32(sample);
dbg_printf("mpls_tunnel_cos %u\n", tunnel_cos);
sample->extended_data_tag |= SASAMPLE_EXTENDED_DATA_MPLS_TUNNEL;
}
/*_________________---------------------------__________________
_________________ readExtendedMplsVC __________________
-----------------___________________________------------------
*/
static void readExtendedMplsVC(SFSample *sample)
{
#define SA_MAX_VCNAME_LEN 100
char vc_name[SA_MAX_VCNAME_LEN+1];
uint32_t vll_vc_id, vc_cos;
if(getString(sample, vc_name, SA_MAX_VCNAME_LEN) > 0)
dbg_printf("mpls_vc_name %s\n", vc_name);
vll_vc_id = getData32(sample);
dbg_printf("mpls_vll_vc_id %u\n", vll_vc_id);
vc_cos = getData32(sample);
dbg_printf("mpls_vc_cos %u\n", vc_cos);
sample->extended_data_tag |= SASAMPLE_EXTENDED_DATA_MPLS_VC;
}
/*_________________---------------------------__________________
_________________ readExtendedMplsFTN __________________
-----------------___________________________------------------
*/
static void readExtendedMplsFTN(SFSample *sample)
{
#define SA_MAX_FTN_LEN 100
char ftn_descr[SA_MAX_FTN_LEN+1];
uint32_t ftn_mask;
if(getString(sample, ftn_descr, SA_MAX_FTN_LEN) > 0)
dbg_printf("mpls_ftn_descr %s\n", ftn_descr);
ftn_mask = getData32(sample);
dbg_printf("mpls_ftn_mask %u\n", ftn_mask);
sample->extended_data_tag |= SASAMPLE_EXTENDED_DATA_MPLS_FTN;
}
/*_________________---------------------------__________________
_________________ readExtendedMplsLDP_FEC __________________
-----------------___________________________------------------
*/
static void readExtendedMplsLDP_FEC(SFSample *sample)
{
#ifdef DEVEL
uint32_t fec_addr_prefix_len = getData32(sample);
#endif
dbg_printf("mpls_fec_addr_prefix_len %u\n", fec_addr_prefix_len);
sample->extended_data_tag |= SASAMPLE_EXTENDED_DATA_MPLS_LDP_FEC;
}
/*_________________---------------------------__________________
_________________ readExtendedVlanTunnel __________________
-----------------___________________________------------------
*/
static void readExtendedVlanTunnel(SFSample *sample)
{
uint32_t lab;
SFLLabelStack lstk;
lstk.depth = getData32(sample);
/* just point at the lablelstack array */
if(lstk.depth > 0)
lstk.stack = (uint32_t *)sample->datap;
else
lstk.stack = NULL;
/* and skip over it in the input */
skipBytes(sample, lstk.depth * 4);
if(lstk.depth > 0) {
int j = 0;
for(; j < lstk.depth; j++) {
if(j == 0) dbg_printf("vlan_tunnel ");
else dbg_printf("-");
lab = ntohl(lstk.stack[j]);
dbg_printf("0x%04x.%u.%u.%u",
(lab >> 16), // TPI
(lab >> 13) & 7, // priority
(lab >> 12) & 1, // CFI
(lab & 4095)); // VLAN
}
dbg_printf("\n");
}
sample->extended_data_tag |= SASAMPLE_EXTENDED_DATA_VLAN_TUNNEL;
}
/*_________________---------------------------__________________
_________________ readExtendedProcess __________________
-----------------___________________________------------------
*/
static void readExtendedProcess(SFSample *sample)
{
char pname[51];
uint32_t num_processes, i;
dbg_printf("extendedType process\n");
num_processes = getData32(sample);
for(i = 0; i < num_processes; i++) {
#ifdef DEVEL
uint32_t pid = getData32(sample);
#endif
if(getString(sample, pname, 50) > 0) dbg_printf("pid %u %s\n", pid, pname);
else dbg_printf("pid %u <no_process_name>\n", pid);
}
}
/*_________________---------------------------__________________
_________________ readFlowSample_header __________________
-----------------___________________________------------------
*/
static void readFlowSample_header(SFSample *sample) {
dbg_printf("flowSampleType HEADER\n");
sample->headerProtocol = getData32(sample);
dbg_printf("headerProtocol %u\n", sample->headerProtocol);
sample->sampledPacketSize = getData32(sample);
dbg_printf("sampledPacketSize %u\n", sample->sampledPacketSize);
if(sample->datagramVersion > 4) {
// stripped count introduced in sFlow version 5
sample->stripped = getData32(sample);
dbg_printf("strippedBytes %u\n", sample->stripped);
}
sample->headerLen = getData32(sample);
dbg_printf("headerLen %u\n", sample->headerLen);
sample->header = (u_char *)sample->datap; /* just point at the header */
skipBytes(sample, sample->headerLen);
{
char scratch[2000];
printHex(sample->header, sample->headerLen, scratch, 2000, 0, 2000);
dbg_printf("headerBytes %s\n", scratch);
}
switch(sample->headerProtocol) {
/* the header protocol tells us where to jump into the decode */
case SFLHEADER_ETHERNET_ISO8023:
decodeLinkLayer(sample);
break;
case SFLHEADER_IPv4:
sample->gotIPV4 = YES;
sample->offsetToIPV4 = 0;
break;
case SFLHEADER_ISO88024_TOKENBUS:
case SFLHEADER_ISO88025_TOKENRING:
case SFLHEADER_FDDI:
case SFLHEADER_FRAME_RELAY:
case SFLHEADER_X25:
case SFLHEADER_PPP:
case SFLHEADER_SMDS:
case SFLHEADER_AAL5:
case SFLHEADER_AAL5_IP:
case SFLHEADER_IPv6:
case SFLHEADER_MPLS:
dbg_printf("NO_DECODE headerProtocol=%d\n", sample->headerProtocol);
break;
default:
LogError("SFLOW: undefined headerProtocol = %d", sample->headerProtocol);
exit(-12);
}
if(sample->gotIPV4) {
// report the size of the original IPPdu (including the IP header)
dbg_printf("IPSize %d\n", sample->sampledPacketSize - sample->stripped - sample->offsetToIPV4);
decodeIPV4(sample);
}
else if(sample->gotIPV6) {
// report the size of the original IPPdu (including the IP header)
dbg_printf("IPSize %d\n", sample->sampledPacketSize - sample->stripped - sample->offsetToIPV6);
decodeIPV6(sample);
}
}
/*_________________---------------------------__________________
_________________ readFlowSample_ethernet __________________
-----------------___________________________------------------
*/
static void readFlowSample_ethernet(SFSample *sample)
{
u_char *p;
dbg_printf("flowSampleType ETHERNET\n");
sample->eth_len = getData32(sample);
memcpy(sample->eth_src, sample->datap, 6);
skipBytes(sample, 6);
memcpy(sample->eth_dst, sample->datap, 6);
skipBytes(sample, 6);
sample->eth_type = getData32(sample);
dbg_printf("ethernet_type %u\n", sample->eth_type);
dbg_printf("ethernet_len %u\n", sample->eth_len);
p = sample->eth_src;
dbg_printf("ethernet_src %02x%02x%02x%02x%02x%02x\n", p[0], p[1], p[2], p[3], p[4], p[5]);
p = sample->eth_dst;
dbg_printf("ethernet_dst %02x%02x%02x%02x%02x%02x\n", p[0], p[1], p[2], p[3], p[4], p[5]);
}
/*_________________---------------------------__________________
_________________ readFlowSample_IPv4 __________________
-----------------___________________________------------------
*/
static void readFlowSample_IPv4(SFSample *sample)
{
dbg_printf("flowSampleType IPV4\n");
sample->headerLen = sizeof(SFLSampled_ipv4);
sample->header = (u_char *)sample->datap; /* just point at the header */
skipBytes(sample, sample->headerLen);
{
#ifdef DEVEL
char buf[51];
#endif
SFLSampled_ipv4 nfKey;
memcpy(&nfKey, sample->header, sizeof(nfKey));
sample->sampledPacketSize = ntohl(nfKey.length);
dbg_printf("sampledPacketSize %u\n", sample->sampledPacketSize);
dbg_printf("IPSize %d\n", sample->sampledPacketSize);
sample->dcd_srcIP = nfKey.src_ip;
sample->dcd_dstIP = nfKey.dst_ip;
sample->dcd_ipProtocol = ntohl(nfKey.protocol);
sample->dcd_ipTos = ntohl(nfKey.tos);
dbg_printf("srcIP %s\n", IP_to_a(sample->dcd_srcIP.s_addr, buf, 51));
dbg_printf("dstIP %s\n", IP_to_a(sample->dcd_dstIP.s_addr, buf, 51));
dbg_printf("IPProtocol %u\n", sample->dcd_ipProtocol);
dbg_printf("IPTOS %u\n", sample->dcd_ipTos);
sample->dcd_sport = ntohl(nfKey.src_port);
sample->dcd_dport = ntohl(nfKey.dst_port);
switch(sample->dcd_ipProtocol) {
case 1: /* ICMP */
dbg_printf("ICMPType %u\n", sample->dcd_dport);
/* not sure about the dest port being icmp type
- might be that src port is icmp type and dest
port is icmp code. Still, have seen some
implementations where src port is 0 and dst
port is the type, so it may be safer to
assume that the destination port has the type */
break;
case 6: /* TCP */
dbg_printf("TCPSrcPort %u\n", sample->dcd_sport);
dbg_printf("TCPDstPort %u\n", sample->dcd_dport);
sample->dcd_tcpFlags = ntohl(nfKey.tcp_flags);
dbg_printf("TCPFlags %u\n", sample->dcd_tcpFlags);
break;
case 17: /* UDP */
dbg_printf("UDPSrcPort %u\n", sample->dcd_sport);
dbg_printf("UDPDstPort %u\n", sample->dcd_dport);
break;
default: /* some other protcol */
break;
}
}
}
/*_________________---------------------------__________________
_________________ readFlowSample_IPv6 __________________
-----------------___________________________------------------
*/
static void readFlowSample_IPv6(SFSample *sample)
{
dbg_printf("flowSampleType IPV6\n");
sample->header = (u_char *)sample->datap; /* just point at the header */
sample->headerLen = sizeof(SFLSampled_ipv6);
skipBytes(sample, sample->headerLen);
{
SFLSampled_ipv6 nfKey6;
memcpy(&nfKey6, sample->header, sizeof(nfKey6));
sample->sampledPacketSize = ntohl(nfKey6.length);
dbg_printf("sampledPacketSize %u\n", sample->sampledPacketSize);
}
/* bug: more decode to do here */
}
/*_________________---------------------------__________________
_________________ readFlowSample_v2v4 __________________
-----------------___________________________------------------
*/
static void readFlowSample_v2v4(SFSample *sample, FlowSource_t *fs) {
dbg_printf("sampleType FLOWSAMPLE\n");
sample->samplesGenerated = getData32(sample);
dbg_printf("sampleSequenceNo %u\n", sample->samplesGenerated);
{
uint32_t samplerId = getData32(sample);
sample->ds_class = samplerId >> 24;
sample->ds_index = samplerId & 0x00ffffff;
dbg_printf("sourceId %u:%u\n", sample->ds_class, sample->ds_index);
}
sample->meanSkipCount = getData32(sample);
sample->samplePool = getData32(sample);
sample->dropEvents = getData32(sample);
sample->inputPort = getData32(sample);
sample->outputPort = getData32(sample);
dbg_printf("meanSkipCount %u\n", sample->meanSkipCount);
dbg_printf("samplePool %u\n", sample->samplePool);
dbg_printf("dropEvents %u\n", sample->dropEvents);
dbg_printf("inputPort %u\n", sample->inputPort);
if(sample->outputPort & 0x80000000) {
uint32_t numOutputs = sample->outputPort & 0x7fffffff;
if(numOutputs > 0) dbg_printf("outputPort multiple %d\n", numOutputs);
else dbg_printf("outputPort multiple >1\n");
}
else dbg_printf("outputPort %u\n", sample->outputPort);
sample->packet_data_tag = getData32(sample);
switch(sample->packet_data_tag) {
case INMPACKETTYPE_HEADER: readFlowSample_header(sample); break;
case INMPACKETTYPE_IPV4: readFlowSample_IPv4(sample); break;
case INMPACKETTYPE_IPV6: readFlowSample_IPv6(sample); break;
default: receiveError(sample, "unexpected packet_data_tag", YES); break;
}
sample->extended_data_tag = 0;
{
uint32_t x;
sample->num_extended = getData32(sample);
for(x = 0; x < sample->num_extended; x++) {
uint32_t extended_tag;
extended_tag = getData32(sample);
switch(extended_tag) {
case INMEXTENDED_SWITCH:
readExtendedSwitch(sample); break;
case INMEXTENDED_ROUTER:
readExtendedRouter(sample); break;
case INMEXTENDED_GATEWAY:
if(sample->datagramVersion == 2)
readExtendedGateway_v2(sample);
else
readExtendedGateway(sample);
break;
case INMEXTENDED_USER:
readExtendedUser(sample); break;
case INMEXTENDED_URL:
readExtendedUrl(sample); break;
default:
LogError("Unrecognized extended data tag: %u", extended_tag);
receiveError(sample, "unrecognized extended data tag", YES);
break;
}
}
}
if(sample->gotIPV4 || sample->gotIPV6)
StoreSflowRecord(sample, fs);
/* if we are writing tcpdump format, write the next packet record now */
/* or line-by-line output... */
if ( verbose )
writeFlowLine(sample);
}
/*_________________---------------------------__________________
_________________ readFlowSample __________________
-----------------___________________________------------------
*/
static void readFlowSample(SFSample *sample, int expanded, FlowSource_t *fs) {
uint32_t num_elements, sampleLength;
u_char *sampleStart;
dbg_printf("sampleType FLOWSAMPLE\n");
sampleLength = getData32(sample);
sampleStart = (u_char *)sample->datap;
sample->samplesGenerated = getData32(sample);
dbg_printf("sampleSequenceNo %u\n", sample->samplesGenerated);
if(expanded) {
sample->ds_class = getData32(sample);
sample->ds_index = getData32(sample);
}
else {
uint32_t samplerId = getData32(sample);
sample->ds_class = samplerId >> 24;
sample->ds_index = samplerId & 0x00ffffff;
}
dbg_printf("sourceId %u:%u\n", sample->ds_class, sample->ds_index);
sample->meanSkipCount = getData32(sample);
sample->samplePool = getData32(sample);
sample->dropEvents = getData32(sample);
dbg_printf("meanSkipCount %u\n", sample->meanSkipCount);
dbg_printf("samplePool %u\n", sample->samplePool);
dbg_printf("dropEvents %u\n", sample->dropEvents);
if(expanded) {
sample->inputPortFormat = getData32(sample);
sample->inputPort = getData32(sample);
sample->outputPortFormat = getData32(sample);
sample->outputPort = getData32(sample);
}
else {
uint32_t inp, outp;
inp = getData32(sample);
outp = getData32(sample);
sample->inputPortFormat = inp >> 30;
sample->outputPortFormat = outp >> 30;
sample->inputPort = inp & 0x3fffffff;
sample->outputPort = outp & 0x3fffffff;
}
if(sample->inputPortFormat == 3) dbg_printf("inputPort format==3 %u\n", sample->inputPort);
else if(sample->inputPortFormat == 2) dbg_printf("inputPort multiple %u\n", sample->inputPort);
else if(sample->inputPortFormat == 1) dbg_printf("inputPort dropCode %u\n", sample->inputPort);
else if(sample->inputPortFormat == 0) dbg_printf("inputPort %u\n", sample->inputPort);
if(sample->outputPortFormat == 3) dbg_printf("outputPort format==3 %u\n", sample->outputPort);
else if(sample->outputPortFormat == 2) dbg_printf("outputPort multiple %u\n", sample->outputPort);
else if(sample->outputPortFormat == 1) dbg_printf("outputPort dropCode %u\n", sample->outputPort);
else if(sample->outputPortFormat == 0) dbg_printf("outputPort %u\n", sample->outputPort);
num_elements = getData32(sample);
{
int el;
for(el = 0; el < num_elements; el++) {
#ifdef DEVEL
char buf[51];
#endif
uint32_t tag, length;
u_char *start;
tag = getData32(sample);
dbg_printf("flowBlock_tag %s\n", printTag(tag, buf, 50));
length = getData32(sample);
start = (u_char *)sample->datap;
switch(tag) {
case SFLFLOW_HEADER: readFlowSample_header(sample); break;
case SFLFLOW_ETHERNET: readFlowSample_ethernet(sample); break;
case SFLFLOW_IPV4: readFlowSample_IPv4(sample); break;
case SFLFLOW_IPV6: readFlowSample_IPv6(sample); break;
case SFLFLOW_EX_SWITCH: readExtendedSwitch(sample); break;
case SFLFLOW_EX_ROUTER: readExtendedRouter(sample); break;
case SFLFLOW_EX_GATEWAY: readExtendedGateway(sample); break;
case SFLFLOW_EX_USER: readExtendedUser(sample); break;
case SFLFLOW_EX_URL: readExtendedUrl(sample); break;
case SFLFLOW_EX_MPLS: readExtendedMpls(sample); break;
case SFLFLOW_EX_NAT: readExtendedNat(sample); break;
case SFLFLOW_EX_MPLS_TUNNEL: readExtendedMplsTunnel(sample); break;
case SFLFLOW_EX_MPLS_VC: readExtendedMplsVC(sample); break;
case SFLFLOW_EX_MPLS_FTN: readExtendedMplsFTN(sample); break;
case SFLFLOW_EX_MPLS_LDP_FEC: readExtendedMplsLDP_FEC(sample); break;
case SFLFLOW_EX_VLAN_TUNNEL: readExtendedVlanTunnel(sample); break;
case SFLFLOW_EX_PROCESS: readExtendedProcess(sample); break;
default: skipTLVRecord(sample, tag, length, "flow_sample_element"); break;
}
lengthCheck(sample, "flow_sample_element", start, length);
}
}
lengthCheck(sample, "flow_sample", sampleStart, sampleLength);
if ( sample->gotIPV4 || sample->gotIPV6 )
StoreSflowRecord(sample, fs);
/* or line-by-line output... */
if ( verbose )
writeFlowLine(sample);
}
/*_________________---------------------------__________________
_________________ readCounters_generic __________________
-----------------___________________________------------------
*/
static void readCounters_generic(SFSample *sample)
{
/* the first part of the generic counters block is really just more info about the interface. */
sample->ifCounters.ifIndex = sf_log_next32(sample, "ifIndex");
sample->ifCounters.ifType = sf_log_next32(sample, "networkType");
sample->ifCounters.ifSpeed = sf_log_next64(sample, "ifSpeed");
sample->ifCounters.ifDirection = sf_log_next32(sample, "ifDirection");
sample->ifCounters.ifStatus = sf_log_next32(sample, "ifStatus");
/* the generic counters always come first */
sample->ifCounters.ifInOctets = sf_log_next64(sample, "ifInOctets");
sample->ifCounters.ifInUcastPkts = sf_log_next32(sample, "ifInUcastPkts");
sample->ifCounters.ifInMulticastPkts = sf_log_next32(sample, "ifInMulticastPkts");
sample->ifCounters.ifInBroadcastPkts = sf_log_next32(sample, "ifInBroadcastPkts");
sample->ifCounters.ifInDiscards = sf_log_next32(sample, "ifInDiscards");
sample->ifCounters.ifInErrors = sf_log_next32(sample, "ifInErrors");
sample->ifCounters.ifInUnknownProtos = sf_log_next32(sample, "ifInUnknownProtos");
sample->ifCounters.ifOutOctets = sf_log_next64(sample, "ifOutOctets");
sample->ifCounters.ifOutUcastPkts = sf_log_next32(sample, "ifOutUcastPkts");
sample->ifCounters.ifOutMulticastPkts = sf_log_next32(sample, "ifOutMulticastPkts");
sample->ifCounters.ifOutBroadcastPkts = sf_log_next32(sample, "ifOutBroadcastPkts");
sample->ifCounters.ifOutDiscards = sf_log_next32(sample, "ifOutDiscards");
sample->ifCounters.ifOutErrors = sf_log_next32(sample, "ifOutErrors");
sample->ifCounters.ifPromiscuousMode = sf_log_next32(sample, "ifPromiscuousMode");
}
/*_________________---------------------------__________________
_________________ readCounters_ethernet __________________
-----------------___________________________------------------
*/
static void readCounters_ethernet(SFSample *sample)
{
sf_log_next32(sample, "dot3StatsAlignmentErrors");
sf_log_next32(sample, "dot3StatsFCSErrors");
sf_log_next32(sample, "dot3StatsSingleCollisionFrames");
sf_log_next32(sample, "dot3StatsMultipleCollisionFrames");
sf_log_next32(sample, "dot3StatsSQETestErrors");
sf_log_next32(sample, "dot3StatsDeferredTransmissions");
sf_log_next32(sample, "dot3StatsLateCollisions");
sf_log_next32(sample, "dot3StatsExcessiveCollisions");
sf_log_next32(sample, "dot3StatsInternalMacTransmitErrors");
sf_log_next32(sample, "dot3StatsCarrierSenseErrors");
sf_log_next32(sample, "dot3StatsFrameTooLongs");
sf_log_next32(sample, "dot3StatsInternalMacReceiveErrors");
sf_log_next32(sample, "dot3StatsSymbolErrors");
}
/*_________________---------------------------__________________
_________________ readCounters_tokenring __________________
-----------------___________________________------------------
*/
static void readCounters_tokenring(SFSample *sample)
{
sf_log_next32(sample, "dot5StatsLineErrors");
sf_log_next32(sample, "dot5StatsBurstErrors");
sf_log_next32(sample, "dot5StatsACErrors");
sf_log_next32(sample, "dot5StatsAbortTransErrors");
sf_log_next32(sample, "dot5StatsInternalErrors");
sf_log_next32(sample, "dot5StatsLostFrameErrors");
sf_log_next32(sample, "dot5StatsReceiveCongestions");
sf_log_next32(sample, "dot5StatsFrameCopiedErrors");
sf_log_next32(sample, "dot5StatsTokenErrors");
sf_log_next32(sample, "dot5StatsSoftErrors");
sf_log_next32(sample, "dot5StatsHardErrors");
sf_log_next32(sample, "dot5StatsSignalLoss");
sf_log_next32(sample, "dot5StatsTransmitBeacons");
sf_log_next32(sample, "dot5StatsRecoverys");
sf_log_next32(sample, "dot5StatsLobeWires");
sf_log_next32(sample, "dot5StatsRemoves");
sf_log_next32(sample, "dot5StatsSingles");
sf_log_next32(sample, "dot5StatsFreqErrors");
}
/*_________________---------------------------__________________
_________________ readCounters_vg __________________
-----------------___________________________------------------
*/
static void readCounters_vg(SFSample *sample)
{
sf_log_next32(sample, "dot12InHighPriorityFrames");
sf_log_next64(sample, "dot12InHighPriorityOctets");
sf_log_next32(sample, "dot12InNormPriorityFrames");
sf_log_next64(sample, "dot12InNormPriorityOctets");
sf_log_next32(sample, "dot12InIPMErrors");
sf_log_next32(sample, "dot12InOversizeFrameErrors");
sf_log_next32(sample, "dot12InDataErrors");
sf_log_next32(sample, "dot12InNullAddressedFrames");
sf_log_next32(sample, "dot12OutHighPriorityFrames");
sf_log_next64(sample, "dot12OutHighPriorityOctets");
sf_log_next32(sample, "dot12TransitionIntoTrainings");
sf_log_next64(sample, "dot12HCInHighPriorityOctets");
sf_log_next64(sample, "dot12HCInNormPriorityOctets");
sf_log_next64(sample, "dot12HCOutHighPriorityOctets");
}
/*_________________---------------------------__________________
_________________ readCounters_vlan __________________
-----------------___________________________------------------
*/
static void readCounters_vlan(SFSample *sample)
{
sample->in_vlan = getData32(sample);
dbg_printf("in_vlan %u\n", sample->in_vlan);
sf_log_next64(sample, "octets");
sf_log_next32(sample, "ucastPkts");
sf_log_next32(sample, "multicastPkts");
sf_log_next32(sample, "broadcastPkts");
sf_log_next32(sample, "discards");
}
/*_________________---------------------------__________________
_________________ readCounters_processor __________________
-----------------___________________________------------------
*/
static void readCounters_processor(SFSample *sample)
{
sf_log_percentage(sample, "5s_cpu");
sf_log_percentage(sample, "1m_cpu");
sf_log_percentage(sample, "5m_cpu");
sf_log_next64(sample, "total_memory_bytes");
sf_log_next64(sample, "free_memory_bytes");
}
/*_________________---------------------------__________________
_________________ readCountersSample_v2v4 __________________
-----------------___________________________------------------
*/
static void readCountersSample_v2v4(SFSample *sample, FlowSource_t *fs)
{
dbg_printf("sampleType COUNTERSSAMPLE\n");
sample->samplesGenerated = getData32(sample);
dbg_printf("sampleSequenceNo %u\n", sample->samplesGenerated);
{
uint32_t samplerId = getData32(sample);
sample->ds_class = samplerId >> 24;
sample->ds_index = samplerId & 0x00ffffff;
}
dbg_printf("sourceId %u:%u\n", sample->ds_class, sample->ds_index);
sample->statsSamplingInterval = getData32(sample);
dbg_printf("statsSamplingInterval %u\n", sample->statsSamplingInterval);
/* now find out what sort of counter blocks we have here... */
sample->counterBlockVersion = getData32(sample);
dbg_printf("counterBlockVersion %u\n", sample->counterBlockVersion);
/* first see if we should read the generic stats */
switch(sample->counterBlockVersion) {
case INMCOUNTERSVERSION_GENERIC:
case INMCOUNTERSVERSION_ETHERNET:
case INMCOUNTERSVERSION_TOKENRING:
case INMCOUNTERSVERSION_FDDI:
case INMCOUNTERSVERSION_VG:
case INMCOUNTERSVERSION_WAN: readCounters_generic(sample); break;
case INMCOUNTERSVERSION_VLAN: break;
default: receiveError(sample, "unknown stats version", YES); break;
}
/* now see if there are any specific counter blocks to add */
switch(sample->counterBlockVersion) {
case INMCOUNTERSVERSION_GENERIC: /* nothing more */ break;
case INMCOUNTERSVERSION_ETHERNET: readCounters_ethernet(sample); break;
case INMCOUNTERSVERSION_TOKENRING:readCounters_tokenring(sample); break;
case INMCOUNTERSVERSION_FDDI: break;
case INMCOUNTERSVERSION_VG: readCounters_vg(sample); break;
case INMCOUNTERSVERSION_WAN: break;
case INMCOUNTERSVERSION_VLAN: readCounters_vlan(sample); break;
default: receiveError(sample, "unknown INMCOUNTERSVERSION", YES); break;
}
/* line-by-line output... */
if ( verbose )
writeCountersLine(sample);
}
/*_________________---------------------------__________________
_________________ readCountersSample __________________
-----------------___________________________------------------
*/
static void readCountersSample(SFSample *sample, int expanded, FlowSource_t *fs) {
uint32_t sampleLength;
uint32_t num_elements;
u_char *sampleStart;
dbg_printf("sampleType COUNTERSSAMPLE\n");
sampleLength = getData32(sample);
sampleStart = (u_char *)sample->datap;
sample->samplesGenerated = getData32(sample);
dbg_printf("sampleSequenceNo %u\n", sample->samplesGenerated);
if(expanded) {
sample->ds_class = getData32(sample);
sample->ds_index = getData32(sample);
}
else {
uint32_t samplerId = getData32(sample);
sample->ds_class = samplerId >> 24;
sample->ds_index = samplerId & 0x00ffffff;
}
dbg_printf("sourceId %u:%u\n", sample->ds_class, sample->ds_index);
num_elements = getData32(sample);
{
int el;
for(el = 0; el < num_elements; el++) {
#ifdef DEVEL
char buf[51];
#endif
uint32_t tag, length;
u_char *start;
tag = getData32(sample);
dbg_printf("counterBlock_tag %s\n", printTag(tag, buf, 50));
length = getData32(sample);
start = (u_char *)sample->datap;
switch(tag) {
case SFLCOUNTERS_GENERIC: readCounters_generic(sample); break;
case SFLCOUNTERS_ETHERNET: readCounters_ethernet(sample); break;
case SFLCOUNTERS_TOKENRING:readCounters_tokenring(sample); break;
case SFLCOUNTERS_VG: readCounters_vg(sample); break;
case SFLCOUNTERS_VLAN: readCounters_vlan(sample); break;
case SFLCOUNTERS_PROCESSOR: readCounters_processor(sample); break;
default: skipTLVRecord(sample, tag, length, "counters_sample_element"); break;
}
lengthCheck(sample, "counters_sample_element", start, length);
}
}
lengthCheck(sample, "counters_sample", sampleStart, sampleLength);
/* line-by-line output... */
if ( verbose )
writeCountersLine(sample);
}
/*_________________---------------------------__________________
_________________ readSFlowDatagram __________________
-----------------___________________________------------------
*/
static inline void readSFlowDatagram(SFSample *sample, FlowSource_t *fs) {
uint32_t samplesInPacket;
uint32_t samp = 0;
struct timeval now;
#ifdef DEVEL
char buf[51];
#endif
/* log some datagram info */
now.tv_sec = time(NULL);
now.tv_usec = 0;
dbg_printf("datagramSourceIP %s\n", IP_to_a(sample->sourceIP.s_addr, buf, 51));
dbg_printf("datagramSize %u\n", sample->rawSampleLen);
dbg_printf("unixSecondsUTC %llu\n", (unsigned long long)now.tv_sec);
/* check the version */
sample->datagramVersion = getData32(sample);
dbg_printf("datagramVersion %d\n", sample->datagramVersion);
if(sample->datagramVersion != 2 &&
sample->datagramVersion != 4 &&
sample->datagramVersion != 5) {
receiveError(sample, "unexpected datagram version number\n", YES);
}
/* get the agent address */
getAddress(sample, &sample->agent_addr);
/* version 5 has an agent sub-id as well */
if(sample->datagramVersion >= 5) {
sample->agentSubId = getData32(sample);
dbg_printf("agentSubId %u\n", sample->agentSubId);
}
sample->sequenceNo = getData32(sample); /* this is the packet sequence number */
sample->sysUpTime = getData32(sample);
samplesInPacket = getData32(sample);
dbg_printf("agent %s\n", printAddress(&sample->agent_addr, buf, 50));
dbg_printf("packetSequenceNo %u\n", sample->sequenceNo);
dbg_printf("sysUpTime %u\n", sample->sysUpTime);
dbg_printf("samplesInPacket %u\n", samplesInPacket);
/* now iterate and pull out the flows and counters samples */
for(; samp < samplesInPacket; samp++) {
memset(&sample->packet_data_tag, 0,
sizeof(*sample) - ((void *)&sample->packet_data_tag - (void *)sample));
// just read the tag, then call the approriate decode fn
sample->sampleType = getData32(sample);
dbg_printf("startSample ----------------------\n");
dbg_printf("sampleType_tag %s\n", printTag(sample->sampleType, buf, 50));
if(sample->datagramVersion >= 5) {
switch(sample->sampleType) {
case SFLFLOW_SAMPLE: readFlowSample(sample, NO, fs);
break;
case SFLCOUNTERS_SAMPLE: readCountersSample(sample, NO, fs);
break;
case SFLFLOW_SAMPLE_EXPANDED: readFlowSample(sample, YES, fs);
break;
case SFLCOUNTERS_SAMPLE_EXPANDED: readCountersSample(sample, YES, fs);
break;
default: skipTLVRecord(sample, sample->sampleType, getData32(sample), "sample");
break;
}
} else {
switch(sample->sampleType) {
case FLOWSAMPLE: readFlowSample_v2v4(sample, fs);
break;
case COUNTERSSAMPLE: readCountersSample_v2v4(sample, fs);
break;
default: receiveError(sample, "unexpected sample type", YES);
break;
}
}
dbg_printf("endSample ----------------------\n");
}
} // readSFlowDatagram
void Init_sflow(void) {
int i, id;
sfConfig.disableNetFlowScale = 0;
sfConfig.netFlowPeerAS = 0;
i=0;
Num_enabled_extensions = 0;
while ( (id = sflow_extensions[i]) != 0 ) {
if ( extension_descriptor[id].enabled ) {
dbg_printf("Enabled extension: %i\n", id);
Num_enabled_extensions++;
}
i++;
}
IP_extension_mask = 0;
i=0;
while ( extension_descriptor[i].description != NULL ) {
switch (extension_descriptor[i].id) {
case EX_NEXT_HOP_v4:
// case EX_NEXT_HOP_v6: - not really needed
if ( extension_descriptor[i].enabled ) {
SetFlag(IP_extension_mask, SFLOW_NEXT_HOP);
Num_enabled_extensions++;
} break;
case EX_NEXT_HOP_BGP_v4:
// case EX_NEXT_HOP_BGP_v6: - not really needed
if ( extension_descriptor[i].enabled ) {
SetFlag(IP_extension_mask, SFLOW_NEXT_HOP_BGP);
Num_enabled_extensions++;
} break;
case EX_ROUTER_IP_v4:
// case EX_ROUTER_IP_v6: - not really needed
if ( extension_descriptor[i].enabled ) {
SetFlag(IP_extension_mask, SFLOW_ROUTER_IP);
Num_enabled_extensions++;
} break;
}
i++;
}
dbg_printf("Num enabled Extensions: %i\n", Num_enabled_extensions);
} // End of Init_sflow
int Setup_Extension_Info(FlowSource_t *fs, exporter_sflow_t *exporter, int num) {
int i, id, extension_size, map_size, map_index;
dbg_printf("Setup Extension ID 0x%x\n", num);
LogInfo("SFLOW: setup extension map %u", num);
// prepare sflow extension map <num>
exporter->sflow_extension_info[num].map = NULL;
extension_size = 0;
// calculate the full extension map size
map_size = Num_enabled_extensions * sizeof(uint16_t) + sizeof(extension_map_t);
// align 32 bits
if ( ( map_size & 0x3 ) != 0 )
map_size += 2;
// Create a generic sflow extension map
exporter->sflow_extension_info[num].map = (extension_map_t *)malloc((size_t)map_size);
if ( !exporter->sflow_extension_info[num].map ) {
LogError("malloc() allocation error in %s line %d: %s", __FILE__, __LINE__, strerror(errno) );
return 0;
}
// calclate the extension size
i=0;
map_index = 0;
while ( (id = sflow_extensions[i]) != 0 ) {
if ( extension_descriptor[id].enabled ) {
extension_size += extension_descriptor[id].size;
exporter->sflow_extension_info[num].map->ex_id[map_index++] = id;
}
i++;
}
if ( TestFlag(IP_extension_mask, SFLOW_NEXT_HOP)) {
id = sflow_ip_extensions[num].next_hop;
extension_size += extension_descriptor[id].size;
exporter->sflow_extension_info[num].map->ex_id[map_index++] = id;
}
if ( TestFlag(IP_extension_mask, SFLOW_NEXT_HOP_BGP)) {
id = sflow_ip_extensions[num].next_hop_bgp;
extension_size += extension_descriptor[id].size;
exporter->sflow_extension_info[num].map->ex_id[map_index++] = id;
}
if ( TestFlag(IP_extension_mask, SFLOW_ROUTER_IP)) {
id = sflow_ip_extensions[num].router_ip;
extension_size += extension_descriptor[id].size;
exporter->sflow_extension_info[num].map->ex_id[map_index++] = id;
}
// terminating null record
exporter->sflow_extension_info[num].map->ex_id[map_index] = 0;
dbg_printf("Extension size: %i\n", extension_size);
// caculate the basic record size: without IP addr space ( v4/v6 dependant )
// byte/packet counters are 32bit -> 2 x uint32_t
// extension_size contains the sum of all optional extensions
sflow_output_record_size[num] = COMMON_RECORD_DATA_SIZE + 2*sizeof(uint32_t) + extension_size;
dbg_printf("Record size: %i\n", sflow_output_record_size[num]);
exporter->sflow_extension_info[num].map->type = ExtensionMapType;
exporter->sflow_extension_info[num].map->size = map_size;
exporter->sflow_extension_info[num].map->map_id = INIT_ID;
exporter->sflow_extension_info[num].map->extension_size = extension_size;
LogInfo("Extension size: %i", extension_size);
LogInfo("Extension map size: %i", map_size);
if ( !AddExtensionMap(fs, exporter->sflow_extension_info[num].map) ) {
// bad - we must free this map and fail - otherwise data can not be read any more
free(exporter->sflow_extension_info[num].map);
exporter->sflow_extension_info[num].map = NULL;
return 0;
}
dbg_printf("New Extension map ID %i\n", exporter->sflow_extension_info[num].map->map_id);
LogInfo("New extension map id: %i", exporter->sflow_extension_info[num].map->map_id);
return 1;
} // End of Setup_Extension_Info
static inline exporter_sflow_t *GetExporter(FlowSource_t *fs, uint32_t agentSubId, uint32_t meanSkipCount) {
exporter_sflow_t **e = (exporter_sflow_t **)&(fs->exporter_data);
generic_sampler_t *sampler;
#define IP_STRING_LEN 40
char ipstr[IP_STRING_LEN];
int i;
// search the appropriate exporter engine
while ( *e ) {
if ( (*e)->info.id == agentSubId && (*e)->info.version == SFLOW_VERSION &&
(*e)->info.ip.v6[0] == fs->ip.v6[0] && (*e)->info.ip.v6[1] == fs->ip.v6[1])
return *e;
e = &((*e)->next);
}
if ( fs->sa_family == AF_INET ) {
uint32_t _ip = htonl(fs->ip.v4);
inet_ntop(AF_INET, &_ip, ipstr, sizeof(ipstr));
} else if ( fs->sa_family == AF_INET6 ) {
uint64_t _ip[2];
_ip[0] = htonll(fs->ip.v6[0]);
_ip[1] = htonll(fs->ip.v6[1]);
inet_ntop(AF_INET6, &_ip, ipstr, sizeof(ipstr));
} else {
strncpy(ipstr, "<unknown>", IP_STRING_LEN);
}
// nothing found
LogInfo("SFLOW: New exporter" );
*e = (exporter_sflow_t *)malloc(sizeof(exporter_sflow_t));
if ( !(*e)) {
LogError("SFLOW: malloc() error in %s line %d: %s", __FILE__, __LINE__, strerror (errno));
return NULL;
}
memset((void *)(*e), 0, sizeof(exporter_sflow_t));
(*e)->next = NULL;
(*e)->info.header.type = ExporterInfoRecordType;
(*e)->info.header.size = sizeof(exporter_info_record_t);
(*e)->info.version = SFLOW_VERSION;
(*e)->info.id = agentSubId;
(*e)->info.ip = fs->ip;
(*e)->info.sa_family = fs->sa_family;
(*e)->sequence_failure = 0;
(*e)->packets = 0;
(*e)->flows = 0;
for (i=0; i<MAX_SFLOW_EXTENSIONS; i++ ) {
(*e)->sflow_extension_info[i].map = NULL;
}
sampler = (generic_sampler_t *)malloc(sizeof(generic_sampler_t));
if ( !sampler ) {
LogError("SFLOW: malloc() error in %s line %d: %s", __FILE__, __LINE__, strerror (errno));
return NULL;
}
(*e)->sampler = sampler;
sampler->info.header.type = SamplerInfoRecordype;
sampler->info.header.size = sizeof(sampler_info_record_t);
sampler->info.id = -1;
sampler->info.mode = 0;
sampler->info.interval = meanSkipCount;
sampler->next = NULL;
FlushInfoExporter(fs, &((*e)->info));
sampler->info.exporter_sysid = (*e)->info.sysid;
FlushInfoSampler(fs, &(sampler->info));
dbg_printf("SFLOW: New exporter: SysID: %u, agentSubId: %u, MeanSkipCount: %u, IP: %s\n",
(*e)->info.sysid, agentSubId, meanSkipCount, ipstr);
LogInfo("SFLOW: New exporter: SysID: %u, agentSubId: %u, MeanSkipCount: %u, IP: %s",
(*e)->info.sysid, agentSubId, meanSkipCount, ipstr);
return (*e);
} // End of GetExporter
void Process_sflow(void *in_buff, ssize_t in_buff_cnt, FlowSource_t *fs) {
SFSample sample;
int exceptionVal;
memset(&sample, 0, sizeof(sample));
sample.rawSample = in_buff;
sample.rawSampleLen = in_buff_cnt;
sample.sourceIP.s_addr = fs->sa_family == PF_INET ? htonl(fs->ip.v4) : 0;;
dbg_printf("startDatagram =================================\n");
if((exceptionVal = setjmp(sample.env)) == 0) {
// TRY
sample.datap = (uint32_t *)sample.rawSample;
sample.endp = (u_char *)sample.rawSample + sample.rawSampleLen;
readSFlowDatagram(&sample, fs );
} else {
// CATCH
dbg_printf("SFLOW: caught exception: %d\n", exceptionVal);
LogError("SFLOW: caught exception: %d", exceptionVal);
}
dbg_printf("endDatagram =================================\n");
} // End of Process_sflow